GUOXIANG ZHAO

zhaoguoxiang999@gmail.com https://gxzzhao.github.io

EDUCATION

Pennsylvania State University Ph.D. in Electrical Engineering GPA: 3.78/4 Dissertation title: Multi-robot optimal motion planning

Purdue University Master of Science in Mechanical Engineering GPA: 3.81/4

Shanghai Jiao Tong University Bachelor of Engineering in Mechanical Engineering & Automation GPA: 87.4/100

RESEARCH INTERESTS

Multi-robot systems, motion planning, distributed control, optimal control, hybrid control, machine learning

RESEARCH EXPERIENCES

Distributed optimal motion planning with dependent goals

- A distributed algorithm is proposed to command robots in a **constrained and continuous state space** to goals with **minimal customized cost** subject to **a class of general nonlinear dynamics**;
- Asynchronous policy iterations are executed where robots only share value functions and policies without disclosing local information and **convergence to safe optimal policy** in the continuous state space is formally guaranteed;
- The distributed update fashion relieves the algorithm's dependency of computational complexity on robot number, reduces communication loads and makes it more flexible about robot dynamics and objectives.

Distributed safe reinforcement learning for multi-robot motion planning August 2020 - March 2021

- · A distributed reinforcement learning algorithm is proposed to coordinate multiple mobile robots;
- A neural network is used to approximate both value and policy function and a **novel gradient-based optimizer** with momentum is proposed to tune weights;
- Anytime collision avoidance, uniform and ultimate boundedness of system states and convergence of neural network controller weights are formally guaranteed via Lyapunov analysis;
- $\cdot\,$ Simulations show both 10 single integrators and unicycle robots can safely arrive at goal regions.

Distributed multi-robot near-optimal motion planning

- A scalable algorithm based on a hybrid control scheme is designed to navigate a large fleet of unicycle robots with a **limited communication/sensing rage** to goal regions in **cluttered environment** without causing any collisions;
- Computational complexity is **independent of robot number** and all robots are guaranteed to **reach their destinations within finite time** and **maintain a safe distance** between any two robots and robot-obstacle pairs;
- Simulations demonstrate the scalability of the algorithm using 25 unicycle robots and irregularly-shaped obstacles and also show **minor optimality losses** compared to globally optimal solutions.

Anytime multi-robot optimal motion planning

- · A numerical algorithm is proposed to guide a team of mobile robots in **unstructured and cluttered environment** subject to **general nonlinear dynamics** arrive at their respective goal sets without causing any collisions;
- \cdot Via set-valued analysis, each robot's safe arrival at goal set with minimal traveling time is guaranteed;
- · Computer simulations and real-world experiments with **Khepera III robots** and **Vicon system** on a four-way intersection show that the numerical algorithm has anytime property;
- \cdot Extensions to high-dimensional nonlinear systems with state constraints are available with minor revisions.

University Park, PA May 2022

West Lafayette, IN May 2015

> Shanghai, China June 2014

March 2019 - Present

March 2018 - February 2019

June 2016 - February 2018

Functional printing control

- · A printing motion control interface EZPrinting is developed to synthesize a HP Thermal Inkjet Printing System with its motion platform for large size printing tasks;
- · It automatically calibrates printing motion platform for user specified missions and evaluates printing quality;
- · EZPrinting facilitates inkjet surface-functionalized printing technologies and successfully produces test strips for detecting food-borne pathogens.

PUBLICATIONS

• Journal papers

[J3] Zhao, G. Jha, D. K., Wang, Y. & Zhu, M. (2022). iPolicy: Incremental Policy Algorithms for Feedback Motion Planning. *IEEE Transactions on Robotics*, Submitted.

[J2] Zhao, G. & Zhu, M. (2022). Scalable distributed algorithms for multi-robot near-optimal motion planning. *Automatica*, vol. 140, Article 108637, June 2022. https://doi.org/10.1016/j.automatica.2022.110241

[J1] Zhao, G. & Zhu, M. (2020). Pareto optimal multi-robot motion planning. *IEEE Transactions on Automatic Control*, vol. 66, no. 9, pp. 3984-3999, Sept. 2020. https://ieeexplore.ieee.org/document/9204457

• Conference papers

[C3] Lu, Y., Guo, Y., Zhao, G. & Zhu, M. (2021). Distributed safe reinforcement learning for multi-robot motion planning. In 29th Mediterranean Conference on Control and Automation, 1209-1214, Bari, Italy.

[C2] Zhao, G. & Zhu, M. (2019). Scalable distributed algo-rithms for multi-robot near-optimal motion planning. In 58th IEEE Conference on Decision and Control, 226–231, Nice, France.

[C1] Zhao, G. & Zhu, M. (2018). Pareto optimal multi-robot motion planning. 2018 American Control Conference, 4020-4025, Milwaukee, WI.

• Working papers

[W1] Zhao, G., Lu, Y., & Zhu, M. Distributed optimal motion planning with dependent goals.

• Patent

[P1] Hung, W.-T., Wang, A., Xu, K., Zhao, G., Zhang, B., Yu, N. (2023). Systems and methods of maintaining map for autonomous driving, U.S. Patent and Trademark Office. Submitted.

COMPUTER SKILLS

Languages & Packages	Linux Shell, Python, MATLAB, C++, JavaScript, Java, PyTorch/Tensorflow, ROS
Development Tools	Docker, Git, Jenkins, AWS suites (CLI/S3/RDS/DynamoDB/EC2/Lambda/Sagemaker),
	MongoDB, PostgreSQL, Jira, Confluence, Slack

COURSEWORK

Linear Control Systems, Dynamical Systems and Control, Nonlinear Systems, Adaptive and Learning Systems, System Identification, Convex Optimization, Stochastic Optimization
Microprocessing Electromechanical Systems, Electromechanical Motion Devices,
Robotic Kinetics and Dynamics, Human Motion Kinetics, Functional Printing
Pattern Recognition and Machine Learning, Introduction to Reinforcement Learning,
Introduction to Deep Learning, Neural Networks
Real Analysis, Stochastic Process, Linear Algebra, Numerical Analysis

ACADEMIC SERVICE

Journal Review

· IEEE Transactions on Automatic Control, IEEE Transactions on Systems, Man and Cybernetics: Systems, IEEE Control Systems Letters, IEEE Open Journal of Control Systems, IET Cyber-Systems and Robotics, International Journal of Aerospace Engineering, Scientific Report - Nature

Conference Review

CDC 2017, ACC 2018, CDC 2018, ICCA 2018, CDC, 2019, ACC 2020, CDC 2020, ACC 2021, CDC 2021, MED 2021, CDC 2022, ICCA 2022, MECC 2022

TEACHING EXPERIENCE

EE 350 Continuous-Time Linear Systems	August 2020 - May 2021
Teaching Assistant	University Park, PA

· Instructed approximately 20 students weekly to solve recitation exercises and finish MATLAB assignments;

· Designed, proctored and graded monthly exams, held office hours and graded homework.

ME 355 Dynamic Systems Laboratory

August 2015 - May 2016 University Park, PA

Teaching Assistant

- · Instructed over 50 students to finish 7 control experiments including robotic arms, magnetic force control and gyroscopes;
- · Maintained 8 sets of laboratory apparatus and revised corresponding laboratory manuals.

HONORS AND AWARDS

• Dean's List and Semester Honors, College of Engineering Purdue University	2014
• Sun Hung Kai Scholarship Shanghai Jiao Tong University	2011-2014
• Timken Scholarship Shanghai Jiao Tong University	2012
• B-Level Merit Scholarship Award Shanghai Jiao Tong University	$\begin{array}{c} {\rm Top} \ 5\% \\ 2013 \end{array}$

WORK EXPERIENCES

TuSimple, Inc.	January 2022 - January 2023
Software Engineer	San Diego, CA

- · Worked in Map Platform Team to develop and maintain tools and services to produce high-definition maps. Supported all Map Ecosystem partners from fixing operational issues to improving user experiences/production efficiencies. Developed new features and optimized applications/infrastructures in catering to needs from map users.
- Designed and developed **Map Renovation Detector** that checks live **visual/LiDAR videos** of operational vehicles, integrated with GPS/IMU readings, to identify road condition changes in an event-driven and stream-processing fashion, visualizes changes on UI and requests users to verify if maps need updates. Developed video projector using C++to extract and mark changes of each frame and visualize results on UI. Developed CNN-based road marker detectors to identify road changes. Developed pipeline filter to eliminate redundant examinations and reduced computations and cost by 40%. Led a team of 4 to migrate deployments to AWS EC2 using Kubernetes, refactored backend and reduced pipeline cost from \sim \$800/wk to < \$60/wk and UI's response time from \sim 20s to <1s. Refactored the whole platform to execute examination in a real-time fashion.
- Developed Map Production UI that visualizes routes on Mapbox, allows users to copy/partition/append/merge desired routes collected from operational vehicles, manages and monitors map production pipelines that merge edits into released maps. Refactored UI to support 2 more times route types and reduced redundant steps by 80% to improve user experience. Supplied >30 map specialists with 3 more GPS-based interactions to increase input efficiency and they dominated all others. Maintained different versions in >20 environments in catering to more than 4 teams' development/research needs. Migrated from monolithic server-based application to cloud-based microservices that speed up development and deployment.
- Developed Assignment Management Platform that dispatches event-triggered tasks to assignees with email/Slack messages, tracks task progress and controls access of different roles. Leveraged **OpenAPI** to support frontend/thirdparty queries and **PostgreSQL** to manage data. Integrated within all map services used by >40 colleagues and is being promoted company wise.

Developed Business Analytics Services that collects production statistics/service deployments/git commits using Java for company-wise repositories. The Services stores data in PostgreSQL and visualizes statistics of service developments and deployments using Looker. Integrated with production platform/GitHub/CICD platform to periodically extract service production/development progress and operational health. Established a scalable framework providing >10 families of tailored metrics with potential expansions to more criteria.

Shanghai FANUC Robotics, Co., Ltd

Field Engineer Intern

- · Installed robot operation systems and programmed computer vision module of industrial robotic arms;
- · Commissioned material handling robotic arms to finish a loading-inspecting-unloading procedure.

LEADERSHIP & SOCIAL SERVICES

Student Affairs Center, Shanghai Jiao Tong University University Representative of National Student Loan Affairs

· Supervised a team of over 30 members in organizing student loan signing ceremonies semesterly;

 $\cdot\,$ Collaborated with bank representatives on verifying applicants' identities;

· Processed over 1600 student loan applications with a total value over RMB 10M (US\$1.6M).

LANGUAGES

Chinese (native), English (professional proficiency)

April, 2011 - December, 2012 Shanghai, China

July 2014 - August 2014

Shanghai, China